AP[®] CHEMISTRY 2006 SCORING GUIDELINES

Question 1

- 1. Answer the following questions that relate to solubility of salts of lead and barium.
 - (a) A saturated solution is prepared by adding excess $PbI_2(s)$ to distilled water to form 1.0 L of solution at 25°C. The concentration of $Pb^{2+}(aq)$ in the saturated solution is found to be $1.3 \times 10^{-3} M$. The chemical equation for the dissolution of $PbI_2(s)$ in water is shown below.

$$PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 I^{-}(aq)$$

(i) Write the equilibrium-constant expression for the equation.

$K_{sp} = [Pb^{2+}][I^{-}]^2$	One point is earned for the correct expression.	

(ii) Calculate the molar concentration of $I^{-}(aq)$ in the solution.

By stoichiometry, $[I^-] = 2 \times [Pb^{2+}]$,	One point is earned for the correct concentration.
thus $[I^-] = 2 \times (1.3 \times 10^{-3}) = 2.6 \times 10^{-3} M$	

(iii) Calculate the value of the equilibrium constant, K_{sp} .

$K_{sp} = [Pb^{2+}][I^{-}]^2 = (1.3 \times 10^{-3})(2.6 \times 10^{-3})^2$	One point is earned for a value of K_{sp} that is
$= 8.8 \times 10^{-9}$	consistent with the answers in parts (a)(i) and (a)(ii).

(b) A saturated solution is prepared by adding $PbI_2(s)$ to distilled water to form 2.0 L of solution at 25°C. What are the molar concentrations of $Pb^{2+}(aq)$ and $I^{-}(aq)$ in the solution? Justify your answer.

The molar concentrations of $Pb^{2+}(aq)$ and $I^{-}(aq)$	
would be the same as in the 1.0 L solution in part (a)	One point is earned for the concentrations
(i.e., $1.3 \times 10^{-3} M$ and $2.6 \times 10^{-3} M$, respectively).	(or stating they are the same as in the solution
The concentrations of solute particles in a saturated	described in part (a)) and justification.
solution are a function of the constant, K_{sp} , which is	
independent of volume.	

© 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP[®] CHEMISTRY 2006 SCORING GUIDELINES

Question 1 (continued)

(c) Solid NaI is added to a saturated solution of PbI_2 at 25°C. Assuming that the volume of the solution does not change, does the molar concentration of $Pb^{2+}(aq)$ in the solution increase, decrease, or remain the same? Justify your answer.

[Pb ²⁺] will decrease.	One point is earned for stating that [Pb ²⁺] will
The NaI(<i>s</i>) will dissolve, increasing $[I^-]$; more $I^-(aq)$ then combines with Pb ²⁺ (<i>aq</i>) to precipitate PbI ₂ (<i>s</i>) so that the ion product $[Pb^{2+}][I^-]^2$ will once again attain the value of 8.8×10^{-9} (K_{sp} at 25°C).	decrease. One point is earned for justification (can involve a Le Chatelier argument).

- (d) The value of K_{sp} for the salt BaCrO₄ is 1.2×10^{-10} . When a 500. mL sample of $8.2 \times 10^{-6} M$ Ba(NO₃)₂ is added to 500. mL of $8.2 \times 10^{-6} M$ Na₂CrO₄, no precipitate is observed.
 - (i) Assuming that volumes are additive, calculate the molar concentrations of $Ba^{2+}(aq)$ and $CrO_4^{2-}(aq)$ in the 1.00 L of solution.

New volume = 500. mL + 500. mL = 1.000 L , therefore $[Ba^{2+}]$ in 1.000 L is one-half its initial value:	
$[\text{Ba}^{2+}] = \frac{500.\text{mL}}{1,000.\text{mL}} \times (8.2 \times 10^{-6}M) = 4.1 \times 10^{-6}M$	One point is earned for the correct concentration.
$[\text{CrO}_4^{2-}] = \frac{500.\text{mL}}{1,000.\text{mL}} \times (8.2 \times 10^{-6} M) = 4.1 \times 10^{-6} M$	

(ii) Use the molar concentrations of $Ba^{2+}(aq)$ ions and $CrO_4^{2-}(aq)$ ions as determined above to show why a precipitate does not form. You must include a calculation as part of your answer.

The product $Q = [Ba^{2+}][CrO_4^{2-}]$ = $(4.1 \times 10^{-6} M)(4.1 \times 10^{-6} M)$	One point is earned for calculating a value of Q that is consistent with the concentration values in part (d)(i).
= 1.7×10^{-11}	One point is earned for
Because $Q = 1.7 \times 10^{-11} < 1.2 \times 10^{-10} = K_{sp}$, no precipitate forms.	using Q to explain why no precipitate forms.

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).